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compared to some of current interest.7 These results may also 
be relevant to puzzling differences reported between Ar matrix 
and organic glass photochemistry, as in the case of phenyl 
azide.32'33 
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Counterattack reagent1 Me3SiSiMe3 can efficiently silylate 
hydrazines under alkaline conditions.2 We intended to use the 
counterattack method to prepare another important class of 
compounds—allyltrimethylsilanes. The allyltrimethylsilane moiety 
is versatile in organic synthesis.3"8 This moiety possesses urn-
polung character and is regarded as a synthon for allyl cations 
and anions. Three new methods reported herein (see Scheme I) 
involve the use of Me3SiSiMe3 as a counterattack reagent; allyl 
alcohols, enals, enones, aldehydes, and ketones can be converted 
to allyltrimethylsilanes9 in one flask. 

We treated an ether solution of allyl alcohols (1.0 equiv) with 
MeLi (1.5 equiv) at 0 0C and then added Me3SiSiMe3 (1.5 equiv) 
and hexamethylphosphoramide (HMPA, ether/HMPA = 1:4). 
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After ether was boiled off in situ under nitrogen, the reaction 
mixture was heated at 80 0C for 24 h. Aqueous workup followed 
by distillation provided the desired allylsilanes10 (Table I and 
Scheme I, method 1). Under these conditions, geraniol (1) gave 
allylsilanes 2 and 39a in 72% yield; linalool (4) afforded the same 
products (2 and 3) in 75% yield as well as a small amount of silyl 
ether 5 (5%); (-)-myrtenol (6) provided allylsilane 7 (65%) and 
silyl ether 8 (15%). When benzyl alcohol (9) was used as the 
starting material, the corresponding trimethylsilane 1011 was 
obtained in only 30% yield. However we were able to convert a 
homobenzylic compound, phenylethyl alcohol (12), to (phenyl-
ethyl)silane 13 in 50% yield. 

Method 2 in Scheme I illustrates a new method for the prep­
aration of allyltrimethylsilanes10 from enals and enones by use 
of alkyllithium and Me3SiSiMe3. We treated acrolein (14, 1.0 
equiv) sequentially with n-BuLi (1.2 equiv) and Me3SiSiMe3 (1.2 
equiv) to give allylsilanes 15 and 1612 in 48% yield (15/16 = 5:1) 
as well as iw-silyl ether 17 in 10% yield. By use of the same 
procedure, methyl vinyl ketone (18) afforded allylsilanes 199b and 
20 in 48% yield (19/20 = 3:1). 

We found that the reaction of saturated aldehydes or ketones 
with vinyllithium (1.3 equiv) and Me3SiSiMe3 (1.3 equiv) also 
produced allyltrimethylsilanes10 (Table I and Scheme I, method 
3). Thus 1-hexanal (21) gave allylsilanes 22 and 23 in 48% yield 
(22/23 = 5:1); 2-heptanone (25) afforded allylsilanes 26 and 27 
in 66% yield (26/27 = 2:1); cyclohexanone (28) led to allylsilanes 
29 in 75% yield.13 

For the preparation of allyltrimethylsilanes by methods 1-3, 
the first step was to generate an allyl alkoxide: removal of the 
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Table I. Allyltrimethylsilanes from Alcohols and Carbonyl Compounds by Methods 1-3 in Scheme I 
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proton from an allyl alcohol with MeLi in method 1; 1,2-addition 
of RLi to an a./3-unsaturated aldehyde or ketone in method 2; 
or addition of vinyllithium to a saturated carbonyl compound in 
method 3. The allyl alkoxide then reacted with Me3SiSiMe3 by 
a novel pathway to give allyltrimethylsilanes in situ; Scheme II 
shows a proposed mechanism with cyclohexanone and vinyllithium 
as the starting material. 

Hexamethyldisilane was attacked by allyl alkoxide 30, generated 
by addition of vinyllithium to ketone 28, to give allyl trimethylsilyl 
ether 31 and Me3Si".14 Leaving group Me3Si" then counterat­
tacked intermediate 31 by an SN2' pathway to produce the cor­
responding allyltrimethylsilane 29 and Me3SiO". In the coun­
terattacking step (i.e., 31 - • 29), a strong C-O bond (86 kcal/mol) 
in 31 was cleaved and a weak Si-C bond (72 kcal/mol) in 29 was 
formed.15 However highly unstable species Me3Si" was consumed 
and more stable anion Me3SiO" was generated. Therefore con­
version of 31 to 29 was a thermodynamically favorable process. 
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In the entire pathway shown in Scheme II, Me3SiSiMe3 behaved 
as a counterattack reagent. 

Each of the methods 1-3 involved an allyl trimethylsilyl ether 
as the intermediate. In the reactions with 4, 6, 9, 14, and 21 as 
the starting material, we were able to detect silyl ethers 5, 8, 11, 
17, and 24, respectively, in the crude reaction products. 

We attempted to prepare a cyclic allyltrimethylsilane from a 
cyclic allyl alcohol (32) by method 1 after having had success in 
primary allyltrimethylsilanes. Nevertheless we obtained only 
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vinyltrimethylsilane 33 (65%) and aromatized product 34 (7%). 
When employing the conditions of method 2 (R2Li = MeLi) to 
2-cyclohexen-l-one (35), we also isolated the corresponding vi­
nyltrimethylsilane 36 as the major product (36%). The desired 
allyltrimethylsilane 38 was obtained in 15% yield; other minor 
products included aromatic silane 37 (15%) and trimethylsilyl ether 
39 (5%). 

In conclusion, use of the counterattack method facilitated the 
preparation of allyltrimethylsilanes. Treatment of the readily 
available starting material, allyl alcohols, enals, enones, aldehydes, 
or ketones with organolithium reagents gave allyl alkoxides. The 
alkoxides then reacted with Me3SiSiMe3 to afford trimethylsilyl 
ethers and Me3Si". In situ a substitution reaction occurred between 
these two species to produce allyltrimethylsilanes in good yields. 
In these one-flask reactions, Me3SiSiMe3 behaved as a counter­
attack reagent. 
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We have recently reported on the electronic properties of 
phosphazene substituents which affect thermodynamic shifts in 
the oxidation peak potential of ferrocene.1 Examination of the 
electrochemistry of ferrocene bonded to phosphazenes provides 
a direct probe of the electronic and bonding structure of this 
important class of molecules. In this paper we present the first 
thermodynamic and kinetic data obtained for the electrochemical 
oxidation and reduction of ferrocene-substituted polyphosphazenes 
[N3P3F4(7?-C5H4)2Fe]„ (I), [N3P3(OCH2CF3)^-C5H4)FeU-
C5H5)Jn (ID, and [N3P3(OCH2CF3)4(7,-C5H4)2Fe]„ (III). 

Cyclic voltammetry and chronoamperometry at platinum disk 
electrodes (radius = 1.9 mm) coated with evaporatively deposited 
(from DMF) polymers were used to study electron transfer and 
cross exchange processes. Voltammograms for a surface immo­
bilized film of I in dichloromethane are shown in Figure IA. 
Voltammetry of I in acetonitrile solutions results in irreproducible 
electrochemistry and deterioration of the polymer film apparently 
due to a chemical reaction of oxidized I with acetonitrile. 
Electrochemistry in dichloromethane is reproducible and can be 
used to ascertain the thermodynamic properties of this polymer. 
The surface coverage of the polymer (T) was obtained by inte­
grating the area under the oxidation wave.2 

The large difference between oxidation and reduction peak 
potentials (A£p) and asymmetrical peak shapes are typical of the 
voltammetry obtained with platinum electrodes modified with 
polymer films of I. The separation between voltammetric peaks 

(1) Saraceno, R. A.; Riding, G. H.; Allcock, H. R.; Ewing, A. G. /. Am. 
Chem. Soc. 1988, 110, 980-982. 
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Figure 1. Cyclic voltammograms of evaporatively deposited poly­
phosphazenes I (A), II (B), and III (C), on Pt electrodes, in 0.1 M 
tetrahexylammonium perchlorate/dichloromethane (A) or 0.1 M tetra-
ethylammonium perchlorate/acetonitrile (B and C). Scan rates: 0.2 (a), 
0.1 (b), 0.05 (c), 0.02 (d), 0.01 (e) V/s. Surface coverage T = 4.9 X 10"8 

mol/cm2 (A), 1.6 X 10"9 mol/cm2 (B), and 4.8 X 10"' mol/cm2 (C). 

Table I. Charge Transport Rates of Ferrocene-Substituted 
Polyphosphazenes" 

( />«' /2C)anod4'C (O c . 1 / 2 Oca ,h C 

compd (10"8 mol/cm2) (10"8 mol/cm2) 
F 1.41 (±0.15) 1.52 (±0.24) 
II 1.96 (±0.18) 1.81 (±0.44) 
III 3.20 (±0.20)' 6.19 (±1.65) 
III 7.49 (±0.71/ 

"The preanalysis potential was held at either 0.0 or 1.0 V for II and 
1.3 V for III for at least 60 s prior to the application of the forward 
(oxidation) or reverse (reduction) potential step, respectively, to assure 
a homogeneous film oxidation state and to eliminate effects from in­
sufficient film oxidation or reduction as an initial condition. bn = 18 
for all averages except I (n = 5) and (Aa'̂ Qanod for " (« = 21). 
'Values in parentheses represent the 95% confidence interval. dValues 
for this polymer calculated with the Randles-Sevcik equation. 'Values 
obtained between 10 and 25 ms. -̂ Values obtained between 25 and 50 
ms. 

ranges from a low of 0.26 V at a 10 mV/s scan rate to a high 
of 1.24 V at a 200 mV/s scan rate. Plots of (fp)ano(i versus square 
root of scan rate (v1/2) were linear (correlation coefficient = 
0.9965, n = 5) for values between the scan rate limits examined. 

The linear relationship between 0'p)anod a n d v^2 indicates that 
charge transfer is similar to a semi-infinite linear diffusion process 
as described by the Randles-Sevcik equation.3 Rates for charge 
transport (Da

l/2C) for I are listed in Table I. The large variation 
of peak potentials with scan rate suggests that the polymer film 
undergoes a chemical reaction following the oxidation of ferrocene. 
This result is similar to the voltammetry observed for its low 
molecular weight analogue N3P3F4(j/-C5H4)2Fe.1 The oxidized 
and chemically rearranged phosphazenyl ferrocene is reduced at 

(3) Randles-Sevcik equation: ip = (2.69 X W5W2AD1Z2Cv"2, ref 9, p 218. 
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